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S1. MONTE CARLO SIMULATION

In this section, we study the finite-sample performance of the proposed estimator. In all
the following settings, the data generating process follows the linear IV model (3.1), where
n = 900 and G = 30 such that n/G2 = 1, which deviates from the usual asymptotics.
The null hypothesis is H0 : β = 0. For each setting, 1,000 replications are conducted to
calculate the empirical rejection rate.
For each setting, we observe {(Xi, Yi, Zi)}ni=1 and a partition {Ig}Gg=1 of {i}ni=1. Let

consecutive observations belong to the same group; that is, I1 = {1, 2, . . . , |I1|}, I2 =
{|I1|+ 1, . . . , |I1|+ |I2|}, etc., where | · | is cardinality. The data are drawn according to
the following process:
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and is i.i.d. across i.

Also, each dimension of the k-dimensional instruments Zi takes one independent draw
from the distribution of {Ui}ni=1 and is fixed across replications. Thus, (Ui, Vi) within
each group follows an AR(1) process and is independent across different groups. The
parameters (β, π, {Ig}Gg=1, k) vary accordingly across settings.

S1.1. Debiasing and truncation

We first investigate three Fama-MacBeth-type inferential procedures to show the neces-
sity of debiasing and truncation. We consider (i) the t-test on group-level 2SLS estimators
(FM), (ii) the t-test on group-level unbiased IV estimators (FMU), and (iii) the proposed
method by Fama-MacBeth truncated unbiased IV estimators (FMTU), with truncation
parameter selected as suggested in the implementation section. The full-sample 2SLS
with CCE estimates of standard errors is also reported for comparison.
In this experiment, we have five instruments (k = 5) and one endogenous variable.

Groups are imbalanced in sizes, with five groups of 90 observations and 25 groups of
18 observations. For each group, the observations follow an AR(1) process as previously
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described. The first-stage coefficient is π = (0.1, 0.1, 0.1, 0.1, 0.1)′/
√
5 such that ∥π∥2 =

0.1.
The power curves are reported in Figure 1. Estimators used in CCE and FM are

both biased. FM has greater bias between the two, because it uses group-level 2SLS
estimators with much larger finite-sample bias than the full-sample estimator. FMU is
less powerful than FMTU, because the unbiased IV estimator does not have a bounded
second moment, such that the resulting t-statistic has a tail that is too large.
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Figure S1. Power comparison among Fama-MacBeth procedures (α = 0.05)

S1.2. Comparison with other inferential methods

In this section, we compare the proposed method with the existing inferential procedures.
We consider the “clustered standard error” approach (CCE) and the natural extension
of Anderson-Rubin test to our settings (AR-CCE). To implement the AR-CCE method,
we apply CCE to the regression of Y −Xβ0 on Z, where β0 is the hypothesized value as
in H0 : β = β0. In our case, we test H0 : β = 0, so AR-CCE is equivalent to performing
CCE to test the hypothesis H0 : γ = 0 in the regression Y = Zγ + U .

We look at several configurations. The number of instruments k varies in the set
{1, 5, 10}. The first-stage strength is chosen such that ∥π∥2 ∈ {0.1, 0.5}, with π =
∥π∥2ιk/

√
k and ιk being a k-vector of 1’s. For example, in the case of ∥π∥2 = 0.1 and

k = 5, we have π = (0.1, 0.1, 0.1, 0.1, 0.1)′/
√
5. We also consider both balanced and im-

balanced groups. In the balanced-group case, we have 30 groups of 30 observations; in
the imbalanced-group case, we have 5 groups of 90 observations and 25 groups of 18
observations.
The sizes are reported in Table S1 and the power curves are in Figures S2, S3, and

S4. Among all methods, only FMTU consistently provides valid inference results under
the null across all settings. CCE displays a noticeable bias under small ∥π∥2 and over-
identification. AR-CCE is robust to weak instruments, but not to group imbalance.
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Table S1. Summary (α = 0.05)

Balanced Groups Imbalanced Groups

Median MAD Size Median MAD Size

k = 1 ∥π∥2 = 0.5 CCE 0.000 0.049 0.050 0.002 0.048 0.060

AR-CCE - - 0.048 - - 0.056

FMTU -0.019 0.059 0.042 -0.033 0.088 0.044

∥π∥2 = 0.1 CCE 0.002 0.240 0.048 0.011 0.243 0.048

AR-CCE - - 0.048 - - 0.056

FMTU 0.010 0.306 0.047 -0.018 0.330 0.047

k = 5 ∥π∥2 = 0.5 CCE 0.012 0.052 0.063 0.012 0.052 0.076

AR-CCE - - 0.042 - - 0.087

FMTU -0.065 0.104 0.043 -0.103 0.151 0.037

∥π∥2 = 0.1 CCE 0.183 0.243 0.127 0.190 0.245 0.144

AR-CCE - - 0.042 - - 0.087

FMTU 0.074 0.278 0.065 0.007 0.329 0.047

k = 10 ∥π∥2 = 0.5 CCE 0.029 0.052 0.066 0.029 0.052 0.073

AR-CCE - - 0.052 - - 0.127

FMTU -0.048 0.105 0.039 -0.085 0.130 0.033

∥π∥2 = 0.1 CCE 0.281 0.287 0.251 0.280 0.286 0.272

AR-CCE - - 0.052 - - 0.127

FMTU 0.084 0.218 0.071 0.055 0.282 0.040

Notes: The “Median” columns show the median bias of the simulated estimates. The
“MAD” columns show the median absolute deviation of the simulated estimates. The “Size”
columns show the empirical rejection rates of the inference methods. AR-CCE does not
report Median and MAD because itself does not produce an estimator for the parameter
of interest.



S4 J. Cao

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
||:||2=0.5, balanced groups

CCE
AR-CCE
FMTU

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
||:||2=0.5, imbalanced groups

CCE
AR-CCE
FMTU

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
||:||2=0.1, balanced groups

CCE
AR-CCE
FMTU

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
||:||2=0.1, imbalanced groups

CCE
AR-CCE
FMTU

Figure S2. Power curves with nominal size α = 0.05 and k = 1.
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Figure S3. Power curves with nominal size α = 0.05 and k = 5.
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Figure S4. Power curves with nominal size α = 0.05 and k = 10.
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S1.3. Truncation parameter choices

In this section, we investigate the impact of the choice of the truncation parameter. The
data regenerating process is the same as in section S1.1. FMTU methods with three
different values of the truncation parameters π∗ are reported (π∗ = −0.15,−0.2,−0.25).
The CCE method is also reported for comparison. The power curves are shown in Fig-
ure S5. Generally, the proposed method is quite robust to the choice of the truncation
parameter in terms of null rejection rate. Moreover, Figure S5 exhibits a “bias-variance”
tradeoff. That is, a higher π∗ corresponds to high power but leads to more bias.
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Figure S5. Power comparison among truncation-parameter choices (α = 0.05)


